MIR retrotransposon sequences provide insulators to the human genome.

نویسندگان

  • Jianrong Wang
  • Cristina Vicente-García
  • Davide Seruggia
  • Eduardo Moltó
  • Ana Fernandez-Miñán
  • Ana Neto
  • Elbert Lee
  • José Luis Gómez-Skarmeta
  • Lluís Montoliu
  • Victoria V Lunyak
  • I King Jordan
چکیده

Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of Chromatin insulators in gene regulation and diseases

With advances in genetic science, the dynamic structure of eukaryotic genome is considered as basis of gene expression regulation. Long-distance communication between regulatory elements and target promoters is critical and the mechanisms responsible for this connection are just starting to emerge. Chromatin insulators are key determinants of proper gene regulation and precise organization of c...

متن کامل

MicroRNAs as Immune Regulators of Inflammation in Children with Epilepsy

Epilepsy is a chronic clinical syndrome of brain function which is caused by abnormal discharge of neurons. MicroRNAs (MiRNAs) are small noncoding RNAs which act post transcriptionally to regulate negatively protein levels. They affect neuroinflammatory signaling, glial and neuronal structure and function, neurogenesis, cell death, and other processes linked to epileptogenesis. The aim of this ...

متن کامل

Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages

CTCF-binding locations represent regulatory sequences that are highly constrained over the course of evolution. To gain insight into how these DNA elements are conserved and spread through the genome, we defined the full spectrum of CTCF-binding sites, including a 33/34-mer motif, and identified over five thousand highly conserved, robust, and tissue-independent CTCF-binding locations by compar...

متن کامل

Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome

Insulator elements affect gene expression by preventing the spread of heterochromatin and restricting transcriptional enhancers from activation of unrelated promoters. In vertebrates, insulator's function requires association with the CCCTC-binding factor (CTCF), a protein that recognizes long and diverse nucleotide sequences. While insulators are critical in gene regulation, only a few have be...

متن کامل

Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer

Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 32  شماره 

صفحات  -

تاریخ انتشار 2015